
The Cake Pattern in Practice

Author: Peter Potts

Date: October 8th, 2014

What is the Cake Pattern?

• Software Design Pattern

• Dependency Injection (DI)

• Aspect-Oriented Programming (AOP)

• No dependencies

• Type-Safe all the way

• First explained by Martin Odersky

• Article by Jonas Bonér

Layered Cake

Interface

Implementation

Wiring

Component Interface

trait VehicleComponent {

 val vehicle: Vehicle

 trait Vehicle
}

One Access Point per Component

trait VehicleComponent {

 val capacity: Capacity

 val shape: Shape

}

trait VehicleComponent {

 val vehicle: Vehicle

 trait Vehicle {

 val capacity: Capacity

 val shape: Shape

 }

}

Component Implementation

trait CarComponent extends VehicleComponent {

 self: CarComponent.Dependencies =>

 class Car extends Vehicle {

 fuel.##

 road.##

 }

}

object CarComponent {
 type Dependencies = FuelComponent with RoadComponent
}

Single Component Wiring

object CarWiring {
 type Dependencies = CarComponent.Dependencies
}

trait CarWiring extends CarComponent {

 self: CarWiring.Dependencies =>

 lazy val vehicle = new Car

}

There is no guarantee that the dependencies
have been instantiated at this point. Therefore,
use lazy val to avoid null pointer exception.

Multiple Component Wiring

trait TransportWiring
 extends CarWiring
 with DieselComponent
 with HighwayComponent {
 self: ModuleWiring.Dependencies =>

 lazy val fuel = new Diesel
 lazy val road = new Highway
}

object TransportWiring {
 type Dependencies =
 CarWiring.Dependencies
 with DieselComponent.Dependencies
 with HighwayComponent.Dependencies
}

Wiring

• Do not wire in a Component class.

• Do not implement in a Wiring class.

• Wiring is programmatic configuration.

Application Wiring

class ApplicationWiring
 extends TransportWiring
 with HomeWiring
 with OfficeWiring

Mixing the Cake
trait { val ; trait }

trait { val ; class } trait { val = }

trait { self ; class }

trait { self ; val = ; class }
trait { val ; trait }

trait { val = }

Wired = Implementation + Wiring

trait CarWired extends VehicleComponent {

 self: CarWired.Dependencies =>

 lazy val vehicle = new Car

 class Car extends Vehicle {

 fuel.##

 road.##

 }

}

object CarWired {
 type Dependencies =
 FuelComponent with RoadComponent
}

Must extend
the component
interface

Wiring

Implementation

Mock with Mockito

class TestWiring

 extends CarWiring

 with FuelComponent

 with RoadComponent {

 lazy val fuel = mock[Fuel]

 lazy val road = mock[Road]

}

new TestWiring {

 vehicle.##

 verify(fuel).##

 verify(road).##

}

Calling the hash of
vehicle causes the car to
be initialized which in
turn calls the hash of
fuel and road.

Scope

Managed Scope

trait WithConnectionComponent {

 def withConnection[T](block: Connection => T): T

}

No Scope

trait FoodComponent {

 def food: Food

}

Singleton Scope

trait PlanetComponent {

 val planet: Planet

}

Context Scope

trait ServiceComponent {

 def service(implicit context: Context)

 trait Service

}
Wiring

Implementation

trait HealthServiceWired extends ServiceComponent {

 def service(implicit context: Context) = new HealthService

 class HealthService(implicit context: Context) extends Service

}

Aspect-Oriented Programming (AOP)

trait TransactionalComponent {

 def transactional[T](block: => T): T

}

Cake Pattern usage:

def add = transactional {1 + 2}

Spring Annotation usage:

@Transactional def add = 1 + 2

Call-by-Name effectively
extends the grammar of Scala.

Don’t eat too much cake!
Define simple injectables with no
dependencies as outer classes rather
than as inner classes of a component.

trait ClockComponent {

 implicit val clock: Clock

}

trait SystemClockWiring extends ClockComponent {

 val clock = SystemClock

}

trait Clock {

 def read: Long

}

object SystemClock extends Clock {

 def read = System.currentTimeMillis

}

Implicit Sub-Injection

trait CinemaComponent {

 self: ClockComponent =>

 val cinema: Cinema

 class Cinema {

 def buyTicket(film: String) = Ticket(film)

 }

}

case class Ticket(film: String, purchaseTime: Long)

object Ticket {

 def apply(film: String)(implicit clock: Clock) =

 new Ticket(film, clock.read)

}

Set Up And Tear Down Hooks

trait SetUpHookComponent {
 def setUpHook(hook: => Unit)
}

trait SetUpHookWired {
 private var setUpHooks = List.empty[() => Unit]

 def setUpHook(hook: => Unit) {
 setUpHooks ::= (() => hook)
 }

 def setUp() {
 setUpHooks.foreach(_())
 }
}

Actor

class EchoActor(injector: EchoActor.Dependencies) extends Actor {

 def receive = {

 case message: Message =>

 injector.listen.##

 sender ! message

 }

}

Object EchoActor {
 type Dependencies = ListenComponent
}

Call hash on listen
and echo message

Props Wiring

object EchoPropsWiring {

 type Dependencies = EchoActor.Dependencies

}

trait EchoPropsWiring extends EchoPropsComponent {

 self: EchoPropsWiring.Dependencies =>

 val echoProps = Props(new EchoActor(self))

}

trait EchoPropsComponent {
 val echoProps: Props
}

A simple single line
function is just wiring!

Notice that the
type is only Props

class EchoActorTest extends WordSpec with Matchers with MockitoSugar {

 "An echo actor" should {

 "echo a message" in {

 new TestKit(ActorSystem("EchoActorTest"))

 with EchoPropsWiring with ListenComponent {

 val listen = mock[Listen]

 verify(listen).##

 TestKit.shutdownActorSystem(system)

 }

 }

 }

}

ScalaTest, Mockito & Akka TestKit

val actor = system.actorOf(echoProps)

val message = new Message

val probe = TestProbe()
actor.tell(message, probe.ref)
probe.expectMsg(message)

ImplicitSender
can be used to
eliminate explicit
TestProbe.

Actor Wiring

trait EchoActorWiring {

 self: EchoActorWiring.Dependencies =>

 lazy val echoActor = actorFactoryRef.actorOf(echoProps, “Echo")

 setUpHook {

 echoActor.##

 }

}

object EchoActorWiring {
 type Dependencies =
 EchoPropsComponent
 with ActorFactoryRefComponent
 with SetUpHookComponent
}

Use set up hook to ensure
echo actor is started after
application wiring is complete.

Conventions
• One access point per component.

• Component, Wiring, Wired suffices.

• Type aliases for dependencies.

• At least a 2 layer cake.

• Easier to work effectively in a team.

• Easier to track down wiring problems.

• Easier to extend and rewire.

Why

XXXXXXXXXX
• Shared Game Services

• Peter Potts

• Principal Architect

• ppotts@kixeye.com

• Any questions?

